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ABSTRACT

Of the various unsteady flows that occur in axial turbomachines certain asymmetric
disturbances, of wave length large in comparison with blade spacing, have become understood
to a certain extent. These disturbances divide themselves into two categories : 'self-induced
oscillations and forced disturbances. A special type of propagating stall appears as a self-
induced disturbance ; an asymmetric velocity profile introduced at the compressor inlet
constitutes a forced disturbance.

Both phenomena have been treated from a unified theoretical point of view in which the
asymmetric disturbances are linearized and the blade characteristics are assumed quasi-steady.
Experimental results are in essential agreement with this theory wherever the limitations of the
theory are satisfied. For the self-induced disturbances and the more interesting examples of the
forced disturbances, the dominant blade characteristic is_the dependence of total pressure loss, ?
rather than the turning angle, upon the local blade inlet angle. )

* This work was performed in part with financial sponsorship of the Office of Naval Research, Contract
Nonr 220(23), NR 097-001 and in part with financial sponsorship of the Office of Scientific Research,
U.S. Airforce, Contract AF 18(600)-1728.



I-INTRODUCTION

The occurrence of stall propagation in axial compressor blade rows is now well known and
has been widely observed. It is understood to take place when the flow inlet angle to a com-
pressor stage lies in a certain range in the. neighborhood of the angle for which steady stall
should be observed. As the inlet angle is increased a stall region occurs covering a group
of blades and, insread of remaining with the same group of blades, moves circumferentially
about the blade row. The properties of this stall are self induced in the sense that they are
in no way a response to other disturbances introduced into the compressor. Of particular
interest here are i) the conditions under which such a self-induced disturbance is possible and
ii) the propagation speed, amplitude and wave length of the stall region.

A second type of unsteady stall that exists in axial compressors is of different origin and,
superficially, is quite distinct from stall propagation. This type of stall takes place in a
compressor rotor in response to a strong circumferential distortion of the axial velocity profile
introduced at the inlet. Here the stall region is forced to remain stationary with respect to the
compressor casing. The points of particular interest here are i) the magnitude of disturbance
required to induce stall and ii) the progression of this stall through succeeding blade rows
with special regard to whether the distortion is smnothed out or retains a finite amplitude
through the compressor.

The mechanism of stall propagation has been investigated extensively from both theoretical
and experimental points of view. The analytical work has, for the most part, been cenfined to
small disturbance theories in which the amplitude of the stall and of flow angle perturbations
are assumed small. Various approaches to the small perturbation theory have been proposed by
H.W. EMMONS [1], W.R. SEARS [2], and F.E. MARBLE[3] ; these theories have been reviewed, and
to some extent compared by W.R. SEARS , reference [4]. In all compressor experiments
reported to the present time the stall amplitude appears to be outside the realm of linearized
theory. Interesting and bold approaches to a non-linear theory have been proposed recently
by A.R, KRiEBEL [5] and J. FABR! and R. SIESTRUNCK [6]. In contrast to the linearized
theories that assume infinitesimal disturbance in the stall wake, these investigators assume -
the fluid in the wake to be nearly stagnant, an approximation that appears to be reasonably well
confirmed by experiments. The price paid for non-linearity is, of course, the inability to compute
details of the flow field. FABRI and SIESTRUNCK [6], in particular, seem to have reduced the
statement of the problem to a minimum of assumptions.

The effect of circumferential distortion to the inlet velocity profile, although of considerable
practical interest in connection with installation of aircraft gas turbines, has not yet been the
subject of any analytical publications, The only work known to the authors is that of Dr. F.F.
EHRICH contained in a personal communication.

It is the purpose of the present paper to show that these two diverse phepomena, stall
propagation and circumferential distortion of the inlet velocity profile, may be treated within
a common framework. A small perturbation theory is developed whose foundations differ in one
essential aspect from previous theories : the mean turning angle through the blade row may be
large. In this theory the propagating stall appears as a self-induced disturbance or “natural
oscillation®, the propagation speed is the characteristic value or "natural frequency", and the
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effect of an inlet distortion appears as a forced disturbance or a “forced oscillation®.
Experiments were made with propagating stall in a stationary annular cascade in which blade
solidity and stagger angle were varied. Using this equipment small amplitude stall was observed,
satisfying the assumptions of the linearized theory. These experimental results are compared in
detail with theoretical calculations. Experiments on the effect of inlet distortion were made
using a three stage low speed compressor. The experimental results are compared qualitatively
with the corresponding theoretical calculations.

The experiments on stall propagation quoted herein were performed by M. David BENENSON
and the experiments on inlet distortion were performed by M. Robert KaTz, both in connection
with their doctoral thesis at the Cahforma Institute of Technology The authors are grateful
for permission to quote these data at this time.
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FIG. 1 - DIAGRAM INDICATING COORDINATES AND NOTATION FOR SELF INDUCED
OR FORCED DISTURBANCE FIELD NEAR A SINGLE BLADE ROW.



Il - THE DISTURBANCE FLOW FIELD

Let x,y be rectangular coordinates with the axis of y parallel to the cascade axis, Figure 1.
The average velocity components and pressure are U,V and P, all constant between any blade
rows. The disturbance velocity components and pressure are u, v and p, all with average values
zero, The disturbance is assumed periodic in the y-direction and travels with a velocity V in
the y-direction. The wave length of the djsturbance is assumed large compared with the blade
gap so the distortions produced by individual blades on the disturbance pattern are ignored even
when there is relative motion between the disturbance and the cascade. Under these cir-
cumstances the disturbance flow is steady in a coordinate system moving with the disturbance.
For small disturbances the equations of motion in linearized form are

du du 1%
U+ (V- =2 e
o +(V=V) == 5 P
)
‘ dv dv_ 19
. U———+(V—V R
2. Ox s)ay P ay
20, dv g '
dx dy
The equations above are equivalent to the following three, more significant equations :
(2.2) [v2+0-7) 3][ + U+ (P=V)v]=0.
d P
(2.3) 5;[011 ~(V=V,)u] =_ _).
d 7y, 8 Py
(2.4) gg[Uv—(V’-—Vs)u]-— \p}

The first of these is the condition that the perturbation of total pressure is constant along the
mean stream lines in the moving system. The second two equations show that the combination
Uv—(V~V,)u, (proportional to flow angle perturbation) and the static pressure divided by
density are potential functions and satisfy the Cauchy-Riemann cond1t1ons For simplicity of
analysis it is convenient to m*roduce the definitions

(2.5) —p—+Uu+(V—Vs)v=H

(2.6) Uv——(V—Vs)u=F
P

2.7 7=G‘

Then the following relations hold

B (2.8) H(x,y) = H(y—- % x)

oF _ 8G F __9G
dy dx. ox dy

and two functions only are required to define the disturbance flow completely. For a semi-
infinite flow field upstream or downstream of a blade row the functions can be given in
particularly simple terms. F and G approach zero far from the cascade and if the blade row is
at x=0, then for F(0,y) given, G(0,y) can be found from

(2.9

. 1
(2.10) GO,y =1 [F(0,7) cotn (y~y) dy =+ F¥0, ), £20
(e} B . .

o RN
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and simildrly

FO,y)=FG*(0,y) x2 0
where the wave length is unity. F and G may be found for all values of x and y if F(0,y) or
G(0,y) is given. Hence the disturbance flow is described completely by H(0,y) and F(0,y)
or G(0,y).

For a finjte region between two blade rows the prescription of the disturbance flow is
somewhat more involved, but it can be done in terms of values of H, F and G along the sides
of the region. '

III- MATCHING CONDITIONS OVER THE BLADE ROW

The wave length of the disturbance has been assumed to be large compared with the blade
gap so that the local inlet conditions at any particular blade channel can be assumed constant
across the channel at any instant and to vary slowly with time if the velocity of the disturbance
relative to the cascade is not very large. The flow is assumed locally quasi-steady. Three
conditions relating to conservation of mass, momentum and energy can be prescribed to give
the local outlet flow in terms of local inlet flow. For finite axial projection of the cascade
there is a shift of the mean stream lines from inlet to outlet, but this is constant along the
cascade and can be ignored unless actual stream lines are required.

Let U,¥,,P, be the average velocity components and pressure upstream of the cascade
and U,V,, F, the corresponding values downstream. Let the perturbation values immedjately
upstream and downstream be u,,v,,p, and u,,v,,p, respectively. The continuity condition for
stator or rotor is simply
(3.1 ) Couy=u
since the average axial velocities are the same upstream and downstream. ,

Let the inlet angle of the flow relative to the cascade be 3, and the outlet angle 8, both
angles measured from the axial direction. Then very generally
3.2) tan ,82 =A + R (tan /31)

* where R is a prescribed function of tanf3, as indicated in Figure 2. For high solidity (constant
leaving angle), R=0; for local flow satisfying the conditions for irrotationality R=K tanf, .
The momentum equation (3.2) can be given in terms of lift coefficient as well although the
nresent form is usually more convenient.

The energy condition over the cascade can be taken as a total pressure loss, proportional

to the square of the local inlet velocity and to a function of tan 3, i.e.

(3.3) Ap, = p(U+u,? P(tan )

where P is a prescribed function shown schematically also in Figure 2. It is assumed that the
functions R(tan[:»’l) and P (tan 61) are single-valued functions, i.e. no time lags or hysterisis
loops.

In most of the calculations to follow, the ‘outlet angle will be taken as constant; under
these circumstances

4 V2 + v, .
(3- ) U:—;—z—= taﬂ[z = const.
for a stater blade row, and
V-V -, *
(3.5 —r—lj—i—~£= tan 3, = const.
+ I

2




for a rotor blade row. Hence

Y,
(3.6) v, =-(—J— u, (stafor).
I/r - Vz .
3.7 . v, = --—l—]—-—- u, (rotor).

The right hand side of Equation (3.3) can be expanded in terms of the disturbance velocities

i.e., for a stator .

1 2 pf"1 " e :
ﬁApz=U P U—>+2UP(z]—> u, +P 7 WUy, =V, u)+ ..

and a very similar expression for a rotor. -

DEVIATION

tan” 1R’
tan f3,

T . D

S|~

GEOMETRIC OUTLET

tan Bl

P(tan f3)

tan f3,

FIG. 2 ~ BEHAVIOR OF BLADE OUTLET ANGLE DEVIATION AND TOTAL
PRESSURE LOSS AS FUNCTIONS OF BLADE INLET ANGLE,

For most calculations it is more convenjent to have the matcliing conditions in terms of the

functions F, G and H introduced previously. Expressing u,,v,,u,,v, and Ap, in this way, the
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matching conditions become, for constant leaving angle
G, ©0,y) ~ G,0,y) +As FI(O,y) + B FQ(O,y) =0
(3.8) 111(O,y)=GI(O,y)-FOLsFI(O,y);I-ﬁS FQ(O,y)
H,0,) =G,(0,9) +y, F,(0,y)

where ) . - ) .
. =V1-Vs P =U + V-V )P , =U + V=V +V (V,-V)
s U s uv, s UV,
1% vi_v?2 ¥ '
A =-L_p’ B-2""2_"1 ,Up  p:
sy s s UV, U v, s ®

for a stator blade row and .
Gl(O,y) ~-G,(0,y) +.ArF1(0,y) + BrFZ(O,y) =0
3.9 H@©O,9=6,0,y)+aF0,9)+BF,0,y)
H,0,7)=G,(0,y)+y Fy(0,y)

where !
Ar=-V’~V1+P' B=~(Vr..V1)2.~(Vr_V2)2+VT*V1+ U _p_p
v A N R A~ A
L - P R A N , =_.U2 + V=V = (V=V)V,~V,)
r U r Uy, -¥v)) r vy -v)

for a rotor blade row.

IV - SELF INDUCED DISTURBANCE FOR A SINGLE BLADE ROW

Let us suppose that uniform flow approaches an isolated stator blade row at the plane x=0.
Since H, (x,y)=0, the conditions that a self induced disturbance exists are given by the first

two Equations (3.8) i.e.
4D G, -G, +A F +B F =0 -
Gl +(as F1+BSF2 =0

where the arguments (0,y) can be dropped without confusion. Taking conjugates of these’
equations by the rules given in Equation (2.10) two further independent equations are found
4.2) Fi+F, -4, G +B G,=0

Fi-a G +86,=0
Eliminating ¥, and G,
(4 3) C% _ﬁs—Bs)Fl +,(1+Bs As —& B)G, =0
(1"—,’33 As =0 BYF) ~ (o, ~f3~B)G, =0.
The conditions for a non trivial solution of these last two equations are that the coefficients
of F, and G, vanish ’

-B.~B =0
(4.4) as BS S

1+ﬁs/ls—ocS,Bs=0.
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Substituting for the coefficients 0 Bs , As and Bs from Equation (3.8), these last two conditions
are equivalent to

V . 2

1 ' 2
(4.5 SR 2P =(1+__>.
- Vv
4.6 s 1pr
(4.6) ’ U 2

The left hand side of Equation (4.5) is a function of V,/U since P and P are functions of
this quantity; the right hand side is constant. One would expect the variation of Ps as a function
of V,/U to be of the form shown in Figure 2, that is PS quite small over a limited range of inlet
angle, then rises sharply as the cascade stalls positively or negatively. Under these circum-
stances there will be generally one and only one value of ¥,/U at which Equation (4.5) is
satisfied. It will occur at the positive stall condition. Hence a self induced disturbance can
occur at only one value of the upstream flow angle.

The second Equation (4.6) must be satisfied simultaneously and gives a unique propagating
speed if Equation (4.5) is satisfied. The amplitude and shape of the self-induced disturbance
are not determined by the linearized theory, and since there is no control over the disturbance
shape, the theory is applicable only for those experiments where the conditions of the theory
are satisfied. The propagating speed should be compared with.propagating stall observations
only if the wave length of the disturbance is large compared with the blade gap, the velocity
fluctuations are small in comparison with U and the leaving angle from the cascade is constant.

The theory above applies to self-induced disturbances on a fixed stator. Obviously the same
theory applies to a rotor; it is merely necessary to add a uniform velocity ¥, the rotor speed,
to the entire system. In the theory so far, it has been assumed that the leaving angle from the
cascade is constant. If leaving angle deviations are taken intc account as well as total pressure
losses the two conditions for a self induced disturbance become

s 4~ Vv A V1V2 ! V22

(4.7) . —(—]lPs ~28 - R'=1+ T
V. 1 1V

4.8 L==P'-=_ZR’',

“® U 2°%5 20

where Rs' is the local slope of the deviation angle curve as indicated in Figure 2. If Ps =0, it
appears that solutions of these equations do not occur for any realistic variations of R with
Vl/U.Hence it is unlikely that a self-induced disturbance resulting from leaving angle deviations
alone can occur. It may be that leaving angle deviations can modify the selfinduced disturbances
that result primarily from the total pressure loss characteristics of the cascade.

'V - FORCED DISTURBANCES ON AN ISOLATED ROTOR

The simplest example of an asymmetric forced disturbance results from a distorted inlet
flow approaching an isolated rotor. Here the upstream disturbance is taken as a weak shear
disturbance, fixed in space with the rotor passing through it. Hence the disturbance speed V
is zero. The non-uniform inlet angles relative to the rotor produce variations on the moving rotor
that, induce additional regular disturbances upstream and downstream and in rurn affect local
inlet angles. These induced disturbances are of the type described by the F and G functions,
hence satisfy Laplace's equation and die out upstream and downstream for an isolated blade
row,
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In the problem as formulated above, H (x,y) is given by the conditions far upstream, and
we wish to find the disturbed flow resultmg from the interaction of this non-uniformity with the
rotor, and in particular the total pressure variation downstream The first two of Equations
(3.9) are :

(5.1) Cl-—Gz+ArF1+BrF2=O ,

(5.2) ' G+ F +BF,=H,

where Vs =0 for a stationary disturbance. The complementary equations to these two, from the
operation (2.10) are :

(5.3) : Fy\+F,~4.6, +BG,=0

(5.4) Fl-aG +BG,=HF.

The four Equations (5.1) to (5.4) are sufficient to determine F,, F,, G, and G, as linear
expressions in H, and H:‘. Then H, can be found from the expression (see Equation (3.9))
5,5 - H,=G,+y, F,=K H +K,H}

where K, and K, are rather lengthy algebtaxc functions of 4, B, o and [ . Substituting for
the latter from Equauon (3.9) i

cos? 0 VIV v
Kl: ; 1 _'_(7,-{_5 Pr,2'—2P,'P,- _(tan262_tan2'81+2 Ef})Pr'

VP V. :
+27]‘ r-——(l—tan B,~2tan, tan 3))

|4 v ’
~(1-tan(, tanﬁz)[fiprz + tan 3, Z]L Pr’2 —2(—(—}5 + tanﬁ1> P'P

(5’6) Vr 2 2 '
{ T (1+8Sec™B,) + tan B, (tan O, tan B +tan”f3, )} P
+2 {Sec2ﬁ2 +tan 6 tan 3, + tanzﬁz}Pr
ASE .
+ {272 ~1+ Sec2B2 (tan 01tanﬁ1+ta02[$2)} J
Sec?B, _, , (V. Sec®B, tan 72 Sec*B, )}
P2+ P anp, B 1 (e _~E§~ﬁ§q+&8@gﬁ§;pf£§;
where
' v, V-7,
tan@, = 7 tan 3, 7
V V-V
tan(92=z]-2T | tanf3, = 'U 2
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cos? 0 v |4 . v '
S I R A e AL

AN

- { L(1+Sec?B,) + tan B, (tan §, tan 3, + tanzﬁz} P’

<

+ 2{ Sec2[32 + Ltan g, tan 3, +'tan2B2} P
(5,6 cont'd) |
vz ‘
+ {2 Ur&— l+Seczﬁz(‘a“‘91tanBlHanzﬁz)}]

1 6 ) I/I'PIQ .2P P' Vr2 2 2 '
+(l~tanf,tanf3, TR +2P P'+ 2-(—1—2'+ tan” B,~ tan” B,) B

|2 4
_ZUrPr +—Er(1—-2 tan Hltan§1~tan262)]

Sec’ , V. Sec?B,tanf V2 Sec"p; =t
x Pr2+~—2%Pr2~tanﬁlPrPr’—-(z/%f-——i———1>Pr’+Sec262Pr+#+——4——i§

The coefficients P, and P occurring in Equation (5.6) for K, and K, are presumed known
functions of (V. ~V)/U and will behave as shown schematically in Figure 2. For disturbances
of moderate amplitude it would be necessary to use mean values of Pr and Pr” to give the best
linear representation of the curve between the amplitude limits. If the rotor were operating at
the design value of VI/U and hence close to the stall, moderate disturbance amplitudes might
give large values of the mean slope of the loss curve P, although P might not be large. Hence

for the most interesting applications of the theory, the slope of the loss curve appears to be the
most important blade characteristic, as was found for self induced disturbances.

VI - AXISYMMETRIC DISTURBANCES IN MULTIPLE BLADE ROWS

The general theory for blade rows with finite spacing follows directly from successive
~ applications of the results of Sections II and III. The analysis leads.to such involved
expressions in -general that it is probably not very useful. Introduction of the trigonometric
- functions for F and G simplifies the analysis appreciably. Suitable forms are

F=(Ae?™ L Be ?™) cos 2ony + (Ce®™* 4 De~?""*) sin 2any

G=(Ae?™ 4 Be~?"™) sin 2any + (Ce?™* _De 2™y cos 2 nny.

Even more drastic simplification is possible for the =axial gap dimensions that occur in most
compressors. The theory is restricted to disturbance wave lengths large compared with the
cascade blade gap. The axial gaps are ordinarily even smaller, so that the variation of the
exponential factors in the expressions (6.1) from one sidé of the gap to the other will usually
be negligible.Hence F and G are described sufficiently well by four constant factors multiplying
the sine and cosine terms.

6.1
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As a specific example suppose one is dealing with a rotor followed by a stator far away
from other blade rows, and that a statiopary sinusoidal shear disturbance is introduced far
upstream. If subscripts 1, 2 and 3 represent the regions upstream of the rotor, between rotor
and stator, and downstream of the stator respectively, and if the rotor is at x =0, the stator
at x=a, the F and G upstream of the rotor are of the form

F, = Ale?m”c cos 2mny + C'lez"rmc sin 2any
nx

6.2)

=~4,e"" sin 2mny + C,e*™™" cos 2mny

1
and downstream of the stator

F,= 336"2""(x'a) cos 2wny + Dae"g"" *-0) sin 2any

G, =B e " &~0) in 3mny ~ D e"?™" =) cos 2mny.

(6.3)

Between the blade rows the F and G are of the form (6.1) with subscript 2. In addition H2 0,y),
H,(a,y) and H (a,y) each require two coefficients for complete description of their sinusoidal
character. Hence there are fourteen unknown coefficients. The three matching conditions over
each blade row, Equations (3.8) and (3.9) supply twelve equations, six for sine terms and six
for cosine terms. The condition that the total pressure disturbance is constant along the mean
stream lines gives '

v
(6.4) Hy(a,y) = H, <o, y— Eéa)

and this gives two more equations, one for the sine term and one for the cosine term. Hence the
entire disturbance flow field can be found. Addition of successive blade rows downstream
introduces as many new equations as new unknown coefficients.

‘the form of the results for even two blade rows is very involved and clumsy unless the
blade gap 1s very small, when considerable simplification occurs. The importance of an axial
gap that is small compared with the disturbance wave length is that the stator rows can play an
important role in the total pressure variation through successive rows. If a stator row is far
downstream of a rotor row, the angle fluctuations of the disturbed flow will have vanished, since
F approaches zero. Hence no appreciable change in total pressure will occur through the stator,
If the stator is close to the rotor, it will be within the range of influence of the angle
disturbances downstream of the roter and may produce large variations of total pressure if near
the stall. '

The possibility of self-induced disturbances in multiple blade rows has been given
preliminary examination. For a single blade row it has been shown that a self-induced
disturbance is possible only at a particular upstream inlet angle. Fo. multiple blade rows the
self-induced disturbance can occur only at a particular approach angle for the stator and at a -
particular approach angle for the rotor simultaneously. In general such coincidence would not
occur, although it should be possible to arrange it by appropriate blade setting. Evidently for
multiple blade rows the forced disturbance is of much greater practical importance than the
self induced.

VI - MEASUREMENTS OF SELF-INDUCED DISTURBANCES

The theory of small amplitude self-induced disturbances as given above was developed
some time ago.It is somewhat more general than that given by MARBLE [31 and Sears [2] bur'is
essentially the same in principe. MARBLE had developed the theory based on a particular shape
of disturbance and both he and SEARs restricted the theories to small turning through the
cascade . Both made comparison with experiments on propagating stall, but it was not fully
realized at the time that the observed stall was of very large amplitude and in this sense did
not fit the assumptions of the theory.
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Apparently David BENENSON, a graduate student at the California Institute of Technology,
was the first to find a clear example of a small disturbance propagating stall. He made observ-
ations of an annular stator cascade of hub ratio 0.8 with a blade solidity of about unity in the
first experiments. There were GO blades in the cascade and he found a disturbance with velocity
fluctuations near the cascade of amplitude 7 to 10 per cent of the mean velocity upstream. The
disturbance upstream was approximately a sine wave of wave length equal to the annulus
circumference. In the experiments the upstream flow direction was fixed and the blade pitch
varied. According to the theory the disturbance should occur at one particular blade angle, but
it was found over a small range of blade angles. l

The conditions of the linearized theory were met in these experiments, and it was not
surprising that the observed propagating speed also agreed in a very satisfactory manner. In the
theory it was assumed that the term 2Ps was small in comparison with (VI/U)PS' in Equation

(4.5) so that : 2
142
(7.1) Vinl 02 .
U 2
U

This formula is very convenient since detailed knowledge of the variation of P with V,/U is
not required, but it should not be used as if V, /U were a variable. The approximate form (7.1)
underestimates the propagating speed since the term (U/V,) P is neglected on the right hand side.

The observed stall speeds are compared with theoretical values from Equation (7.1) in
Figure 3. The outlet angle corresponding to tan™!(V,/U)was measured as the blade angles were
changed. The theoretical propagating speed is somewhat too low as would be expected. Obsery-
ations were made at reduced solidity as well and it was found that the range of blade angles in_
which propagating stall occurred decreased and no self induced disturbances were found below
a solidity of 0.5. Certainly the leaving angle fluctuations must increase as the solidity is
reduced and these would tend to become more important than the losses in their influence on
the self induced disturbances. It has been pointed out in Section IV that it would be difficult
to explain propagating stall in terms of outlet angle variation alone. The experiments with
varying solidity seem to confirm such a conclusion.

.

0.8 Y - ]
< UNIFORM STALL
_ F EXPERIMENTAL
$ SRS -
v < /i' \
0.7 US_ 2
O ) '
_/
C
- // ,? " UNSTALL ——=
0.6 J
THEORETICAL i
L}
—STAGGER ANGLE, DEGREES—-
0.5 ] L
20 22 24 26 . 28 30 32 34

F1G. 3 - COMPARISON OF THEORETICAL STALL PROPAGATION SPEED
WITH PROPAGATION SPEED OBSERVED IN ANNULAR CASCADE.
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BENENSON found another example of small amplitude self induced disturbance in an isolated
stator blade row is a compressor with hub ratjo 0.6. The disturbance amplitude was again 7 to
10 per cent of the mean velocity but the disturbance wave length was only four or five times the
blade gap. There were 32 blades with seven or eight sinusoidal waves around the annulus. The
disturbances were somewhat irregular, perhaps because the appropriate conditions were not met
along the entire blade length. A comparison of a theoretical point (from Equation (6.1)) with the
observed stall speeds is made in Figure 4 and even here the agreement is good. Because of the
short disturbance wave length, however, this example is not as convincing as the previous one.

0.6
ROTOR STALL —=
4 ~C——— UNSTALL™ .
* THEORY

4 x

0.5 "I}— | 0 -
/
—— P, DEGREES —3>
0.4
40 42 44 46 48 50 52

F1G. 4 - COMPARISON OF THEORETICAL STALL PROPAGATION SPEED WITH
) PROPAGATION SPEEDS OBSERVED IN SINGLE STAGE COMPRESSOR.

The self induced disturbances described above should not be confused with the large
amplitude propagating stall most commonly observed in single and multistage compressors.
Apparently they are two distinct phenomena, or at least are produced by quite different blade
characreristics. The large amplitude propagating stall is characterized by disturbance velocities
that are invariably as large as the mean stream velocity. The edges of the stalled regions are
sharply defined and within the stalled region the flow is violently turbulent. As the stalled
region approaches a blade the flow separates on the suction side, as it recedes from a blade
the flow reattaches on the pressure side. The small amplitude self-induced disturbance involves

attachment and reattachment of the boundary layer on one side only and the separated region .

does not cross the channel to the neighboring blade. .

There is no evidence that the small amplitude disturbance represents the beginning of a
large amplitude disturbance. The small amplitude disturbance first occurs at a certain inlet
angle, continues at about constant amplitude over a narrow range of angle as the inlet angle
is increased and then is replaced by a more or less uniform stall at higher inlet angles. Appar-’
ently the small amplitude self induced disturbance does not occur at solidities smaller than
0.5 or so. The large amplitude propagating stall, in marked contrast, occurs over a very wide
range of inlet angles and over a wide range of solidities (from 1.0 down to 0.07 in one set
of tests).

" . Of the two types of propagating stall, that of large amplitude is by far the more important
in actual turbomachines. The importance of the small amplitude self-induced disturbance is
quite indirect. Having demonstrated in a convincing manner that this latter type is the one that
corresponds to the linearized theory, there is no further reason for confusing it with the large
amplitude stall, and there is no further temptation to attempt to explain the large amplitude stall
in terms of linearized theory. Considerable confusion on this matter occurred in the past and
probably delayed the understanding of stall propagation appreciably. The confusion was quite
natural. Self-induced disturbances were observed in turbomachines; they were difficult to
describe in detail but had one easily measurable and precise characteristic, the propagating

.
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speed. The linearized theory showed the possibility of self-induced disturbances of any shape
with one precise characteristic, the propagating speed. It is not surprising that the theory and
experiment were compared on the basis of the characteristic speed, ignoring all other details.
Occasionally the two coincided, usually not, and there was a temptation to introduce additional
parameters, such as time lags, to bring the theoretical stall speed into coincidence with the
observed speed.

BENENSON's observations of small amplitude self-induced disturbances lead to clarification
of an unsatisfactory situation. In one sense it is disappointing; it means that the theory for the
large amplitude stall will be very much more difficult than was first thought, since no lineariz-
ation of the flow field or of the matching conditions will be possible. The observations of small
amplitude self-induced disturbances also prove that the slope of the loss curve is the most
important cascade characteristic. Until this was proved, there was some doubt as to. the
appropriate matching conditions for forced disturbances. Hence the experiments on small
amplitude stall, in itself a phenomenon of academic importance, have had rather profound
influence in helping to understand other unsteady phenomena in axial turbomachines.

VIII - MEASUREMENTS OF FORCED DISTURBANCES

Since there appeared to be no detailed measurements concerning the behavior of axial
compressor blade rows when large peripheral variations of the inlet profile are introduced,
an experimental investigation of this problem was begun somewhat over a year ago by Robert
KATZ, a graduate student at the California Institude of Technology. He has used a large three-
stage axial compressor in the investigations ; the details of this machine and some of the
instrumentation are described by T.lura and W.D.RANNIE in reference [8]. KaTz introduced
the inlet disturbances by means of high solidity screens installed about 1/4 compressor diameter
upstream of the inlet vanes as indicated in Figure 5.For the cxperimentd! results to be presented
here the screens covered a 90 degree sector of the compressor. The compressor is so arranged
that total pressure and flow angle measurements could be made downstream of each stationary
or rotating blade row. Only the circumferential surveys of total pressure will be discussed in
detail here. - '

BLOCKAGE SCREENS

: t—— 1 DIAMETER .

p=EEANANANE

— U

INLET VANE

P

FiG. 5~ INSTALLATION OF CIRCUMFERENTIALLY NON-UNIFORM BLOCKAGE
SCREENS AT INLET OF THREE-STAGE COMPRESSOR.
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Utilizing all three stages of the compressor 2 rather severe blockage was introduced at the
inlet and total pressure surveys were made downstream of each rotor to determine how the
disturbance developed through the machine. Figure 6 shows plots of these measurements at the
mean compressor radius aad for a flow coefficient q?cor}:espondihg approximately to the design
value of the machine. The survey downstream of the screen indicates the magnitude of the
disturbance ; the disturbance corresponds to about one quarter of the dynamic pressure computed
using the rotor tip speed, that is somewhat more than half of the normal total pressure rise
across a stage. The large effect of the disturbance on inlet angles may be appreciated from
the fact that this total pressure loss corresponds to a reduction in the axial velocity of more
than 50 per cent. ’
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FiG. 6 ~ TOTAL PRESSURE VARIATIONS BEHIND EACH ROTOR OF THREE-
STAGE COMPRESSOR RESULTING FROM WAKE OF BLOCKAGE SCREENS, .

Downstream of the first rotor the pattern of the total pressure fluctuation is considerably
modified but the amplitude is not appreciably reduced. By the time the second rotor is traversed
the total pressure profile is distinctly smoothed out and it has very nearly vanished downstream’
of the third rotor. With the input total pressure profile given, corresponding total pressure
profiles may be calculated by applying the single blade row theory successively to each blade
row. While the results are in qualitative agreement with experiments the significance of such a

.

comparison is questionable for two reasons : i) The proper loss and leaving angle deviation
values to be used are not yet known with sufficieat certainty and ii) The effect of mutunal
interference between adjacent blade rows may be quite strong, as later results will show, and
this factor imvalidates application of single blade row theory to successive stalling blade
rows.

To observe the influence of mutual blade row interference upon the total pressure, KATzZ
obtained total pressure profiles behind the rotor and stator using only one stage of the
compressor with both normal stage spacing and with the stator located several blade chords
downstream of the rotor, With the expanded stage the losses across the stator were normal and
negligible in comparison with the input total pressure variation. In contrast, large total pressure
losses across the stator are shown by the surveys of the normal stage shown in Figure 7 for

.
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root, mean and tip radii. This very significant influence of blade spacing comes about in the
following manner : When the stator is far downstream of the rotor, most of the local effects are
smoothed out by the time the flow reaches the stator. The flow enters the stator at very nearly
the same uniform relative angle (although not the same velocity) as it would in the absence of
inlet disturbance. Consequently normal stator losses appear for the expanded stage. However
when the rows are spaced closely, the flow angles into the stator are still severely distorted
due to the flow field set up by the non-uniform flow passing through the rotor. The large losses
of Figure 7 reflect this variation in inlet angle. It is to be noted also that the effect is consider-
ably more severe at the blade root than either the mean or tip radii.
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FiG. 7- EFFECT OF STATOR LOSS AT ROOT, MEAN AND TIP RADIl. TOTAL
PRESSURE VARIATIONS BEHIND ROTOR AND STATOR OF SINGLE
STAGE COMPRESSOR RESULTING FROM WAKE OF BLOCKAGE SCREEN.
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Concentrating for the moment on losses near the stator root, Figures 8 and 9 respectively
show the influence of mean flow rate and amplitude of input disturbance of the loss profile. As
might be anticipated, increasing the mean flow coefficient to a value reasonably near the
design peint reduced the stator stall loss but not markedly. This fact coanfirms, in a way, the
indication that the flow angles induced by the blade row interference are quite large, since
‘a significant change in the mean angle of attack does not modify the situation appreciably.
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FiIG.8 ~- EFFECT OF STATOR LOSS AT TWO FLOW RATES. TOTAL PRESSURE
- VARIATIONS BEHIND ROTOR AND STATOR OF SINGLE STAGE COM-
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The wariation of input profile, shown in Figure 9, exerts a quite large but linear influence
on stator loss although the loss profiles retain a similar shape as their magnitude changes. It
is somewhat surprising that this linear dependence upon input amplitude holds in spite of the
fact the losses and perturbation angles are really of significant size.

To imdicate the magniiude and origin of the stator losses, the forced disturbance flow
through 2 typical rotor-stator combination has been calculated in several ways, utilizing the
foregoing theory. Assuming a total pressure disturbance of unit amplitude at the compressor
inlet the amplitude of the total pressure disturbance was computed downstream of the stator
and the flow angle disturbances were computed at the rotor and stator inlet. The computations

EFFECT OF TYPICAL GUIDE YANE. ROTOR. STATOR COMBINATION
ON TOTAL PRESSURE PERTURBATION INTRODUCED AT INLET

5pt Downstream of Stator 83 Rotor Inlet 803 Stator Inlet
Bpt Input O3 Rotor Inlet, a=c0,No Loss 8f3 Rotor Inlet, o =00, No Loss

a0 a=0 a =09 a=0 ) a=0

No Less 0.83 0.59 . 1.00 1,27 0(1.61) 2.03

Rotor Lass 0.73 0.65 1.20 0,85 0(1.41) 2.21
Rotor Loss]

and 0.65 1.28 1.20 1.04 0(1.41) 4,18
Stator Loss]
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were carried out for infinite spacing of the rotor and stator, @=c0,and for infinitesimal spacing
of rotor and stator, a=0. In each case the disturbances weré computed assuming no loss in
either rotor and stator, losses in the rotor only, and losses in both rotor and stator. In each
reasonable values were chosen for the important parameter, the slope of the pressure loss curve
although the proper values were not known. The results of these computatjons are summarized
in the accompanying table.
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Consider first the total pressure variation downstream of the stator. In the absence of losses
the amplitude of losses falls across the stage due to work added in the rotor. The smoothing
influence of the stage is more pronounced when the blade rows are closely spaced. The reason
for this is that the pressure field of the stator increases local angles of attack on the rotor; as
shown in the next column of the table, and consequently the local total pressure rise is aug-
mented when the spacing is close. With losses in both rotor and stator components, the trend is
clearly reversed. There are two reasons for this change : i) The stator losses are very large
when the stages are closely spaced due to the unfavorable inlet angles induced on them by
mutual interference. ii) The proximity of the stator tends to decrease local rotor inlet angles
rather than increase them because high stator losses, which vary as the square of the approach
velocity, encourage the fluid to "funnel" into low velocity regions. With the loss coefficients
assumed, the loss profile for the closely spaced stage is worse when the fluid leaves the stage
than when it enters, and the preponderant fraction of this loss may be attributed to stator stall.
Because of its importance, the factors that induce high inlet angles to the stator may be analyzed
somewhat. When the rotor and stator are widely spaced there is no induced angle at the stator
inlet for the reasons discussed previously. Then the induced stator inlet angles for close
spacing consist in two parts, the flow angle perturbations that exist immediately downstream of
the rotor in the absence of the stator and the flow angle perturbations induced by the stator and
by any mutual effects. The stator inlet angle perturbations that would exist irrespective of the
stator are given in parentheses in the table. The stator inlet angle perturbation attributable to
the stator and to mutual effects corresponds to the difference between the numbers in the last
column and the correspondmg numbers in parenthe51s. It is clear that the major part of the
stator  inlet angle perturbation is caused by mutual interference and that the stator losses
themselves play an essential role in inducing these perturbations. In thlS sense one may think
of the stator losses as being "self induced" to a certain extent.

The analytical and experimental investigations carried out so far concerning forced
disturbance confirm the observation made previously that the slope of the blade loss
characteristic is the most influential physical parameter in the system. Moreover these results
demonstrate that the induced stall loss in stator blade rows is an essential factor in deciding
the rate at which a disturbance, introduced at a compressor inlet, will be smoothed out as the
flow progresses through successive stages.
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